Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Sensory over-responsivity: parent report, direct assessment measures, and neural architecture

Abstract

Background:Sensory processing difficulties are common across neurodevelopmental disorders. Thus, reliable measures are needed to understand the biological underpinnings of these differences. This study aimed to define a scoring methodology specific to auditory (AOR) and tactile (TOR) over-responsivity. Second, in a pilot cohort using MRI Diffusion Tensor Imaging, we performed a proof of concept study of whether children with AOR showed measurable differences in their white matter integrity. Methods:This study included children with AOR and TOR from a mixed neurodevelopmental disorder cohort including autism and sensory processing dysfunction (n = 176) as well as neurotypical children (n = 128). We established cohorts based on sensory over-responsivity using parent report (Short Sensory Profile (SSP)) and direct assessment (Sensory Processing-Three Dimensions: Assessment (SP-3D:A)) measures. With a subset of the children (n = 39), group comparisons, based on AOR phenotype, were conducted comparing the white matter fractional anisotropy in 23 regions of interest. Results:Using direct assessment, 31% of the children with neurodevelopmental disorders had AOR and 27% had TOR. The inter-test agreement between SSP and SP-3D:A for AOR was 65% and TOR was 50%. Children with AOR had three white matter tracts showing decreased fractional anisotropy relative to children without AOR. Conclusions:This study identified cut-off scores for AOR and TOR using the SSP parent report and SP-3D:A observation. A combination of questionnaire and direct observation measures should be used in clinical and research settings. The SSP parent report and SP-3D:A direct observation ratings overlapped moderately for sensory related behaviors. Based on these preliminary structural neuroimaging results, we suggest a putative neural network may contribute to AOR.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View