Skip to main content
Open Access Publications from the University of California


UC San Francisco Previously Published Works bannerUCSF

Evaluation of Chondrocalcinosis and Associated Knee Joint Degeneration Using MR Imaging: Data from the Osteoarthritis Initiative



To evaluate the ability of different MRI sequences to detect chondrocalcinosis within knee cartilage and menisci, and to analyze the association with joint degeneration.


Subjects with radiographic knee chondrocalcinosis (n = 90, age 67.7 ± 7.3 years, 50 women) were selected from the Osteoarthritis Initiative and matched to controls without radiographic chondrocalcinosis (n = 90). Visualization of calcium-containing crystals (CaC) was compared between 3D T1-weighted gradient-echo (T1GE), 3D dual echo steady-state (DESS), 2D intermediate-weighted (IW), and proton density (PD)-weighted fast spin-echo (FSE) sequences obtained with 3T MRI and correlated with a semiquantitative CaC score obtained from radiographs. Structural abnormalities were assessed using Whole-Organ MRI Score (WORMS) and logistic regression models were used to compare cartilage compartments with and without CaC.


Correlations between CaC counts of MRI sequences and degree of radiographic calcifications were highest for GE (rT1GE = 0.73, P < 0.001; rDESS = 0.68, P < 0.001) compared to other sequences (P > 0.05). Meniscus WORMS was significantly higher in subjects with chondrocalcinosis compared to controls (P = 0.005). Cartilage defects were significantly more frequent in compartments with CaC than without (patella: P = 0.006; lateral tibia: P < 0.001; lateral femur condyle: P = 0.017).


Gradient-echo sequences were most useful for the detection of chondrocalcinosis and presence of CaC was associated with higher prevalence of cartilage and meniscal damage.

Key points

• Magnetic resonance imaging is useful for assessing burden of calcium-containing crystals (CaC). • Gradient-echo sequences are superior to fast spin echo sequences for CaC imaging. • Presence of CaC is associated with meniscus and cartilage degradation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View