Skip to main content
Download PDF
- Main
Proof of Correctness for Sparse Tiling of Gauss-Seidel
Abstract
Gauss-Seidel is an iterative computation used for solving sets of simulataneous linear equations, $Au=f$. When these unknowns are associated with nodes in an irregular mesh, then the Gauss-Seidel computation structure is related to the mesh structure. We use this structure to subdivide the computation at runtime using a technique called {\em sparse tiling}. The rescheduled computation exhibits better data locality and therefore improved performance. This paper gives a complete proof that a serial schedule based on sparse tiling generates results equivalent to those that a standard Gauss-Seidel computation produces.
Pre-2018 CSE ID: CS2001-0690
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%