- Main
In vivo and in vitro immunogenicity of novel MHC class I presented epitopes to confer protective immunity against chronic HTLV-1 infection
Published Web Location
https://doi.org/10.1016/j.vaccine.2018.07.002Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has infected as many as 10 million people worldwide. While 90% are asymptomatic, 5% develop severe diseases including adult T-cell leukemia/lymphoka (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). No vaccine against HTLV-1 exists, and screening programs are not universal. However, patients with chronic HTLV-1 infection have high frequencies of HTLV-1-activated CD8+ T cells, and the two main HLA alleles (A2, A24) are present in 88% of infected individuals. We thus utilized an immunoproteomics approach to characterize MHC-I restricted epitopes presented by HLA-A2+, A24+ MT-2 and SLB-1 cell lines. Unlike traditional motif prediction algorithms, this approach identifies epitopes associated with cytotoxic T-cell responses in their naturally processed forms, minimizing differences in antigen processing and protein expression levels. Out of nine identified peptides, we confirmed six novel MHC-I restricted epitopes that were capable of binding HLA-A2 and HLA-A24 alleles and used in vitro and in vivo methods to generate CD8+ T cells specific for each of these peptides. MagPix MILLIPLEX data showed that in vitro generated epitope-specific CD8+ T cells secreted IFN-ɣ, granzyme B, MIP-1α, TNF-α, perforin and IL-10 when cultured in the presence of MT-2 cell line. Degranulation assay confirmed cytotoxic response through surface expression of CD107 on CD8+ T cells when cultured with MT-2 cells. A CD8+ T-cell killing assay indicated significant antiviral activity of CD8+ T cells specific against all identified peptides. In vivo generated CD8+ T cells similarly demonstrated immunogenicity on ELISpot, CD107 degranulation assay, and MagPix MILLIPLEX analysis. These epitopes are thus candidates for a therapeutic peptide-based vaccine against HTLV-1, and our results provide preclinical data for the advancement of such a vaccine.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-