Skip to main content
eScholarship
Open Access Publications from the University of California

Biochemical modeling of microbial memory effects and catabolite repression on soil organic carbon compounds

  • Author(s): la Cecilia, Daniele
  • Riley, William J
  • Maggi, Federico
  • et al.

Published Web Location

http://dx.doi.org/10.1016/j.soilbio.2018.10.003
No data is associated with this publication.
Abstract

© 2018 Elsevier Ltd Microbial decomposition of Soil Organic Matter (SOM) is largely controlled by environmental and edaphic factors such as temperature, pH, and moisture. However, microbial metabolism is controlled by catabolite repression, which leads microbes to grow on preferred nutrient and energy sources first. In particular, Catabolite Repression for Carbon (CR-C) defines the hierarchical preference of bacteria for particular C sources. This control depends on the presence of signal molecules conferring bacteria a memory for recent growth conditions on less preferred C sources. The combined effect of catabolite repression and microbial memory (called here Memory-Associated Catabolite Repression for Carbon, MACR-C) has not yet been investigated in detail. First, we use observations and a numerical model to test the hypothesis that MACR-C explains substrate preferential consumption in a simple, 2-C substrate system, whereas Michaelis-Menten-Monod kinetics of competitive substrate consumption, non-competitive inhibition, or their combination, do not. Next, we carry out numerical analyses to explore the sensitivity of (1) estimated parameters to experimental observations and (2) model structure to steady-state substrate concentration under pulse or continuous substrate application. Our results show that MACR-C substantially affected substrate consumption and microbial readiness to switch between C sources.

Item not freely available? Link broken?
Report a problem accessing this item