- Main
Integration of TGF-β-induced Smad signaling in the insulin-induced transcriptional response in endothelial cells
Abstract
Insulin signaling governs many processes including glucose homeostasis and metabolism, and is therapeutically used to treat hyperglycemia in diabetes. We demonstrated that insulin-induced Akt activation enhances the sensitivity to TGF-β by directing an increase in cell surface TGF-β receptors from a pool of intracellular TGF-β receptors. Consequently, increased autocrine TGF-β signaling in response to insulin participates in insulin-induced angiogenic responses of endothelial cells. With TGF-β signaling controlling many cell responses, including differentiation and extracellular matrix deposition, and pathologically promoting fibrosis and cancer cell dissemination, we addressed to which extent autocrine TGF-β signaling participates in insulin-induced gene responses of human endothelial cells. Transcriptome analyses of the insulin response, in the absence or presence of a TGF-β receptor kinase inhibitor, revealed substantial positive and negative contributions of autocrine TGF-β signaling in insulin-responsive gene responses. Furthermore, insulin-induced responses of many genes depended on or resulted from autocrine TGF-β signaling. Our analyses also highlight extensive contributions of autocrine TGF-β signaling to basal gene expression in the absence of insulin, and identified many novel TGF-β-responsive genes. This data resource may aid in the appreciation of the roles of autocrine TGF-β signaling in normal physiological responses to insulin, and implications of therapeutic insulin usage.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-