Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

CHIP(-/-)-Mouse Liver: Adiponectin-AMPK-FOXO-Activation Overrides CYP2E1-Elicited JNK1-Activation, Delaying Onset of NASH: Therapeutic Implications.

  • Author(s): Kim, Sung-Mi;
  • Grenert, James P;
  • Patterson, Cam;
  • Correia, Maria Almira
  • et al.

Published Web Location

https://doi.org/10.1038/srep29423
Abstract

Genetic ablation of C-terminus of Hsc70-interacting protein (CHIP) E3 ubiquitin-ligase impairs hepatic cytochrome P450 CYP2E1 degradation. Consequent CYP2E1 gain of function accelerates reactive O2 species (ROS) production, triggering oxidative/proteotoxic stress associated with sustained activation of c-Jun NH2-terminal kinase (JNK)-signaling cascades, pro-inflammatory effectors/cytokines, insulin resistance, progressive hepatocellular ballooning and microvesicular steatosis. Despite this, little evidence of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) was found in CHIP(-/-)-mice over the first 8-9-months of life. We herein document that this lack of tissue injury is largely due to the concurrent up-regulation and/or activation of the adiponectin-5'-AMP-activated protein kinase (AMPK)-forkhead box O (FOXO)-signaling axis stemming from at the least three synergistic features: Up-regulated expression of adipose tissue adiponectin and its hepatic adipoR1/adipoR2 receptors, stabilization of hepatic AMPKα1-isoform, identified herein for the first time as a CHIP-ubiquitination substrate (unlike its AMPKα2-isoform), as well as nuclear stabilization of FOXOs, well-known CHIP-ubiquitination targets. Such beneficial predominance of the adiponectin-AMPK-FOXO-signaling axis over the sustained JNK-elevation and injurious insulin resistance in CHIP(-/-)-livers apparently counteracts/delays rapid progression of the hepatic microvesicular steatosis to the characteristic macrovesicular steatosis observed in clinical NASH and/or rodent NASH-models.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View