Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Pools, transformations, and sources of P in high-elevation soils: Implications for nutrient transfer to Sierra Nevada lakes

  • Author(s): Homyak, PM;
  • Sickman, JO;
  • Melack, JM
  • et al.
Abstract

In high-elevation lakes of the Sierra Nevada (California), increases in P supply have been inferred from shifts in P to N limitation. To examine factors possibly leading to changes in P supply, we measured pools and transformations in soil P, and developed a long-term mass balance to estimate the contribution of parent material weathering to soil P stocks. Common Sierra Nevada soils were found to not be P-deficient and to be retentive of P due to the influence of Fe- and Al-oxides. Total P averaged 867μgPg-1 in the top 10cm of soil (O and A horizons) and 597μgPg-1 in the 10-60cm depth (B horizons), of which 70% in A horizons and 60% in B horizons was freely exchangeable or associated with Fe and Al. Weathering of parent material explained 69% of the P found in soils and lost from the catchment since deglaciation, implying that long-term atmospheric P deposition (0.02kgha-1yr-1) represented the balance of P inputs (31%) during the past 10,000years of soil development. During spring snowmelt ~27% of the total soil P was transferred between organic and inorganic pools; average inorganic P pools decreased by 232μgPg-1, while organic P pools increased by 242μgPg-1. Microbial biomass P was highest during winter and decreased six-fold to a minimum in the fall. Interactions between hydrology and biological processes strongly influence the rate of P transfer from catchment soils to lakes. © 2013 Elsevier B.V.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View