Skip to main content
eScholarship
Open Access Publications from the University of California

Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils

  • Author(s): Hatters, Danny M
  • Zhong, Ning
  • Rutenber, Earl
  • Weisgraber, Karl H
  • et al.
Abstract

The three isoforms of apolipoprotein (apo) E are strongly associated with different risks for Alzheimer's disease: apoE4 > apoE3 > apoE2. Here, we show at physiological salt concentrations and pH that native tetramers of apoE form soluble aggregates in vitro that bind the amyloid dyes thioflavin T and Congo red. However, unlike classic amyloid fibrils, the aggregates adopt an irregular protofilament-like morphology and are seemingly highly alpha-helical. The aggregates formed at substantially different rates (apoE4 > apoE3 > apoE2) and were significantly more toxic to cultured neuronal cells than the tetramer. Since the three isoforms have large differences in conformational stability that can influence aggregation and amyloid pathways, we tested the effects of mutations that increased or decreased stability. Decreasing the conformational stability of the amino-terminal domain of apoE increased aggregation rates and vice versa. Our findings provide a new perspective for an isoform-specific pathogenic role for apoE aggregation in which differences in the conformational stability of the amino-terminal domain mediate neurodegeneration. (c) 2006 Elsevier Ltd. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View