- Main
Statistical Learning in Wasserstein Space
Abstract
We seek a generalization of regression and principle component analysis (PCA) in a metric space where data points are distributions metrized by the Wasserstein metric. We recast these analyses as multimarginal optimal transport problems. The particular formulation allows efficient computation, ensures existence of optimal solutions, and admits a probabilistic interpretation over the space of paths (line segments). Application of the theory to the interpolation of empirical distributions, images, power spectra, as well as assessing uncertainty in experimental designs, is envisioned.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-