Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

A Theory of Color Barcodes

Abstract

There is increased interest in the use of color barcodes to encode more information per area unit than regular, black-and-white barcodes. For example, Microsoft's HCCB technology uses 4 or 8 colors per patch. Unfortunately, the observed color of a surface depends as much on the illuminant spectrum (and other viewing parameters) as on the surface reflectivity, which complicates the task of decoding the content of the barcode. A popular solution is to append to the barcode a palette with the reference colors. In this paper, we propose a new approach to color barcode decoding, one that does not require a reference color palette. Our algorithm decodes groups of color bars at once, exploiting the fact that joint color changes can be represented by a low-dimensional space. Decoding a group of bars (a barcode element) is thus equivalent to searching for the nearest subspace in a dataset. We also propose algorithms to select subsets of barcode elements that can be decoded with low error probability. Our experimental results show that our barcode decoding algorithm enables substantial information rate increase with respect to system that display a color palette, at a very low decoding error rate. © 2011 IEEE.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View