Skip to main content
eScholarship
Open Access Publications from the University of California

Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2

  • Author(s): Favaro, M
  • Xiao, H
  • Cheng, T
  • Goddard, WA
  • Crumlin, EJ
  • et al.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495248/
No data is associated with this publication.
Abstract

A national priority is to convert CO2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO2 in the presence of water as the first step toward CO2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.

Item not freely available? Link broken?
Report a problem accessing this item