Skip to main content
eScholarship
Open Access Publications from the University of California

Increasing FTIR spectromicroscopy speed and resolution through compressive imaging

Abstract

At the Advanced Light Source at Lawrence Berkeley National Laboratory, we are investigating how to increase both the speed and resolution of synchrotron infrared imaging. Synchrotron infrared beamlines have diffraction-limited spot sizes and high signal to noise, however spectral images must be obtained one point at a time and the spatial resolution is limited by the effects of diffraction. One technique to assist in speeding up spectral image acquisition is described here and uses compressive imaging algorithms. Compressive imaging can potentially attain resolutions higher than allowed by diffraction and/or can acquire spectral images without having to measure every spatial point individually thus increasing the speed of such maps. Here we present and discuss initial tests of compressive imaging techniques performed with ALS Beamline 1.4.3?s Nic-Plan infrared microscope, Beamline 1.4.4 Continuum XL IR microscope, and also with a stand-alone Nicolet Nexus 470 FTIR spectrometer.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View