Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Distinct cytokine profiles of neonatal natural killer T cells after expansion with subsets of dendritic cells.

  • Author(s): Kadowaki, N;
  • Antonenko, S;
  • Ho, S;
  • Rissoan, MC;
  • Soumelis, V;
  • Porcelli, SA;
  • Lanier, LL;
  • Liu, YJ
  • et al.
Abstract

Natural killer T (NKT) cells are a highly conserved subset of T cells that have been shown to play a critical role in suppressing T helper cell type 1-mediated autoimmune diseases and graft versus host disease in an interleukin (IL)-4-dependent manner. Thus, it is important to understand how the development of IL-4- versus interferon (IFN)-gamma-producing NKT cells is regulated. Here, we show that NKT cells from adult blood and those from cord blood undergo massive expansion in cell numbers (500-70,000-fold) during a 4-wk culture with IL-2, IL-7, phytohemagglutinin, anti-CD3, and anti-CD28 mAbs. Unlike adult NKT cells that preferentially produce both IL-4 and IFN-gamma, neonatal NKT cells preferentially produce IL-4 after polyclonal activation. Addition of type 2 dendritic cells (DC2) enhances the development of neonatal NKT cells into IL-4(+)IFN-gamma(-) NKT2 cells, whereas addition of type 1 dendritic cells (DC1) induces polarization towards IL-4(-)IFN-gamma(+) NKT1 cells. Adult NKT cells display limited plasticity for polarization induced by DC1 or DC2. Thus, newly generated NKT cells may possess the potent ability to develop into IL-4(+)IFN-gamma(-) NKT2 cells in response to appropriate stimuli and may thereafter acquire the tendency to produce both IL-4 and IFN-gamma.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View