Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Shift toward greater pathologic post-myocardial infarction remodeling with loss of the adaptive hypertrophic signaling of alpha1 adrenergic receptors in mice.

Abstract

Rationale

We have hypothesized that post-infarction cardiac remodeling can be influenced by shifts in the balance between intracellular mediators of "pathologic" and "physiologic" hypertrophy. Although alpha1 adrenergic receptors (alpha1-ARs) mediate pro-adaptive hypertrophy during pressure overload, little is known about their role or downstream mediators after myocardial infarction.

Methods

We performed loss-of-function experiments via coronary ligation in alpha1A-AR knockout (AKO) mice. Post-myocardial infarction (MI) remodeling was evaluated via echocardiography, quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of cardiac fetal gene expression, histologic analysis of myocyte size, post-MI fibrosis and apoptosis, and Western blot analysis of apoptotic regulators.

Results

Alpha1A-AR knockout paradoxically increased post-MI hypertrophy compared to wild type controls (WT), but also increased ventricular dilatation, fibrosis, apoptosis, and 4-week post-MI mortality (64% in AKO vs. 25% in WT, P = 0.02), suggesting a shift toward greater pathologic hypertrophy in the absence of pro-adaptive alpha1A effects. alpha1A-AR knockout increased phospho-p38 levels in the pre-MI myocardium compared to WT (0.55 ± 0.16 vs. 0.03 ± 0.01, P<0.05) but decreased phospho-ERK1/2 post-MI (0.49 ± 0.35 arbitrary units vs. 1.55 ± 0.43 in WT, P<0.05). Furthermore, expression of pro-apoptotic factor Bax was increased (1.19 ± 0.15 vs. 0.78 ± 0.08, P<0.05) and expression of anti-apoptotic factors Bcl2 was decreased (0.26 ± 0.01 vs. 0.55 ± 0.06, P<0.01) compared to WT.

Conclusions

Alpha1A-AR provides an important counterbalance to pathologic pathways during post-MI remodeling that may be mediated through ERK1/2 signaling; these observations provide support for further development of an alpha1A-AR/ERK-based molecular intervention for this chronic, often fatal disease.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View