Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu

Abstract

Single-chain Fv (scFv) molecules exhibit highly specific tumour-targeting properties in tumour-bearing mice. However, because of their smaller size and monovalent binding, the quantities of radiolabelled scFv retained in tumours limit their therapeutic applications. Diabodies are dimeric antibody-based molecules composed of two non-covalently associated scFv that bind to antigen in a divalent manner. In vitro, diabodies produced from the anti-HER2/neu (c-erbB-2) scFv C6.5 displayed approximately 40-fold greater affinity for HER2/neu by surface plasmon resonance biosensor measurements and significantly prolonged association with antigen on the surface of SK-OV-3 cells (t1/2 cell surface retention of > 5 h vs 5 min) compared with C6.5 scFv. In SK-OV-3 tumour-bearing scid mice, radioiodinated C6.5 diabody displayed a highly favourable balance of quantitative tumour retention and specificity. By as early as 4 h after i.v. administration, significantly more diabody was retained in tumour (10 %ID g(-1)) than in blood (6.7 %ID ml(-1)) or normal tissue (liver, 2.8 %ID g(-1); lung, 7.1 %ID g(-1); kidney, 5.2 %ID g(-1)). Over the next 20 h, the quantity present in blood and most tissues dropped approximately tenfold, while the tumour retained 6.5 %ID g(-1) or about two-thirds of its 4-h value. In contrast, the 24-h tumour retention of radioiodinated C6.5 scFv monomer was only 1 %ID g(-1). When diabody retentions were examined over the course of a 72-h study and cumulative area under the curve (AUC) values were determined, the resulting tumor-organ AUC ratios were found to be superior to those previously reported for other monovalent or divalent scFv molecules. In conclusion, the diabody format provides the C6.5 molecule with a distinct in vitro and in vivo targeting advantage and has promise as a delivery vehicle for therapeutic agents.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View