Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

A 2DRF pulse sequence for bolus tracking in hyperpolarized 13C imaging

Published Web Location

https://doi.org/10.1002/mrm.25427
Abstract

Purpose

A novel application of two-dimensional (2D) spatially selective radiofrequency (2DRF) excitation pulses in hyperpolarized 13C imaging is proposed for monitoring the bolus injection with highly efficient sampling of the initially polarized substrate, thus leaving more polarization available for detection of the subsequently generated metabolic products.

Methods

A 2DRF pulse was designed with a spiral trajectory and conventional clinical gradient performance. To demonstrate the ability of our 2DRF bolus tracking pulse sequence, hyperpolarized [1-(13)ruvate in vivo imaging experiments were performed in normal rats, with a comparison to 1DRF excitation pulses.

Results

Our designed 2DRF pulse was able to rapidly and efficiently monitor the injected bolus dynamics in vivo, with an 8-fold enhanced time resolution in comparison with 1DRF in our experimental settings. When applied at the pyruvate frequency for bolus tracking, our 2DRF pulse demonstrated reduced saturation of the hyperpolarization for the substrate and metabolic products compared to a 1DRF pulse, while being immune to ±0.5 ppm magnetic field inhomogeneity at 3T.

Conclusion

2DRF pulses in hyperpolarized 13C imaging can be used to efficiently monitor the bolus injection with reduced hyperpolarization saturation compared to 1DRF pulses. The parameters of our design are based on clinical scanner limits, which allows for rapid translation to human studies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View