Skip to main content
eScholarship
Open Access Publications from the University of California

Panda: A Compiler Framework for Concurrent CPU + GPU Execution of 3D Stencil Computations on GPU-accelerated Supercomputers

  • Author(s): Sourouri, M
  • Baden, SB
  • Cai, X
  • et al.
Abstract

© 2016, Springer Science+Business Media New York. We present a new compiler framework for truly heterogeneous 3D stencil computation on GPU clusters. Our framework consists of a simple directive-based programming model and a tightly integrated source-to-source compiler. Annotated with a small number of directives, sequential stencil C codes can be automatically parallelized for large-scale GPU clusters. The most distinctive feature of the compiler is its capability to generate hybrid MPI+ CUDA+ OpenMP code that uses concurrent CPU+ GPU computing to unleash the full potential of powerful GPU clusters. The auto-generated hybrid codes hide the overhead of various data motion by overlapping them with computation. Test results on the Titan supercomputer and the Wilkes cluster show that auto-translated codes can achieve about 90 % of the performance of highly optimized handwritten codes, for both a simple stencil benchmark and a real-world application in cardiac modeling. The user-friendliness and performance of our domain-specific compiler framework allow harnessing the full power of GPU-accelerated supercomputing without painstaking coding effort.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View