Bayesian Hyper-LASSO Classification for Feature Selection with Application to Endometrial Cancer RNA-seq Data
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Bayesian Hyper-LASSO Classification for Feature Selection with Application to Endometrial Cancer RNA-seq Data

  • Author(s): Jiang, Lai
  • Greenwood, Celia MT
  • Yao, Weixin
  • Li, Longhai
  • et al.
Abstract

Feature selection is demanded in many modern scientific research problems that use high-dimensional data. A typical example is to find the most useful genes that are related to a certain disease (eg, cancer) from high-dimensional gene expressions. The expressions of genes have grouping structures, for example, a group of co-regulated genes that have similar biological functions tend to have similar expressions. Many statistical methods have been proposed to take the grouping structure into consideration in feature selection, including group LASSO, supervised group LASSO, and regression on group representatives. In this paper, we propose a fully Bayesian Robit regression method with heavy-tailed (sparsity) priors (shortened by FBRHT) for selecting features with grouping structure. The main features of FBRHT include that it discards more aggressively unrelated features than LASSO, and it can make feature selection within groups automatically without a pre-specified grouping structure. In this paper, we use simulated and real datasets to demonstrate that the predictive power of the sparse feature subsets selected by FBRHT are comparable with other much larger feature subsets selected by LASSO, group LASSO, supervised group LASSO, penalized logistic regression and random forest, and that the succinct feature subsets selected by FBRHT have significantly better predictive power than the feature subsets of the same size taken from the top features selected by the aforementioned methods.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View