Hypersurfaces with nonnegative Ricci curvature in hyperbolic space
Skip to main content
eScholarship
Open Access Publications from the University of California

Hypersurfaces with nonnegative Ricci curvature in hyperbolic space

  • Author(s): Bonini, Vincent
  • Ma, Shiguang
  • Qing, Jie
  • et al.
Abstract

Based on properties of n-subharmonic functions we show that a complete, noncompact, properly embedded hypersurface with nonnegative Ricci curvature in hyperbolic space has an asymptotic boundary at infinity of at most two points. Moreover, the presence of two points in the asymptotic boundary is a rigidity condition that forces the hypersurface to be an equidistant hypersurface about a geodesic line in hyperbolic space. This gives an affirmative answer to the question raised by Alexander and Currier in 1990.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View