Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Pro-Secretory Activity and Pharmacology in Rabbits of an Aminophenyl-1,3,5-Triazine CFTR Activator for Dry Eye Disorders

Abstract

Purpose

Pharmacological activation of ocular surface cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels is a potential pro-secretory approach to treat dry eye disorders. We previously reported the discovery of aminophenyl-1,3,5-triazines, one of which, N-methyl-N-phenyl-6-(2,2,3,3-tetrafluoropropoxy)-1,3,5-triazine-2,4-diamine (herein called CFTRact-K267), fully activated human wildtype CFTR with EC50 ∼ 30 nM and increased tear volume for 8 hours in mice. Here, functional and pharmacological studies of CFTRact-K267 were done in adult New Zealand white rabbits.

Methods

CFTR chloride conductance was measured in vivo by ocular surface potential differences and in ex vivo conjunctiva by short-circuit current. Tear volume was measured by the Schirmer tear test II and CFTRact-K267 pharmacokinetics and tissue distribution by liquid chromatography/mass spectrometry. Toxicity profile was studied for 28 days with twice-daily topical administration.

Results

Electrophysiological measurements in vivo and in ex vivo conjunctiva demonstrated CFTR activation by CFTRact-K267. A single topical dose of 3 nmol CFTRact-K267 increased tear production by >5 mm for 9 hours by the Schirmer tear test, with predicted therapeutic concentrations maintained in tear fluid. No tachyphylaxis was seen following 28-day twice-daily administration, and changes were not observed in corneal surface integrity or thickness, intraocular pressure, or ocular histology. At day 28, CFTRact-K267 was concentrated in the cornea and conjunctiva and was not detectable in blood or peripheral organs.

Conclusions

These studies support the development of CFTRact-K267 as a pro-secretory therapy for dry eye disorders.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View