Identifying ocean swell generation events from Ross Ice Shelf seismic data Identifying ocean swell generation events from Ross Ice Shelf seismic data
Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Identifying ocean swell generation events from Ross Ice Shelf seismic data Identifying ocean swell generation events from Ross Ice Shelf seismic data

Abstract

Abstract: Strong surface winds under extratropical cyclones exert intense surface stresses on the ocean that lead to upper-ocean mixing, intensified heat fluxes, and the generation of waves, that, over time, lead to swell waves (longer than 10-s period) that travel long distances. Because low-frequency swell propagates faster than high-frequency swell, the frequency dependence of swell arrival times at a measurement site can be used to infer the distance and time that the wave has traveled from its generation site. This study presents a methodology that employs spectrograms of ocean swell from point observations on the Ross Ice Shelf (RIS) to verify the position of high wind speed areas over the Southern Ocean, and therefore of extratropical cyclones. The focus here is on the implementation and robustness of the methodology in order to lay the groundwork for future broad application to verify Southern Ocean storm positions from atmospheric reanalysis data. The method developed here combines linear swell dispersion with a parametric wave model to construct a time- and frequency-dependent model of the dispersed swell arrivals in spectrograms of seismic observations on the RIS. A two-step optimization procedure (deep learning) of gradient descent and Monte Carlo sampling allows detailed estimates of the parameter distributions, with robust estimates of swell origins. Median uncertainties of swell source locations are 110 km in radial distance and 2 h in time. The uncertainties are derived from RIS observations and the model, rather than an assumed distribution. This method is an example of supervised machine learning informed by physical first principles in order to facilitate parameter interpretation in the physical domain.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View