Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Stochastic groundwater flow analysis in the presence of trends in heterogeneous hydraulic conductivity fields

Abstract

Due to changes in lithostatic pressure, differential fracturing across bedding planes and irregularities in depositional environments, hydraulic conductivity exhibits heterogeneities and trends at various spatial scales. Using spectral theory, we have examined the effect of trends in hydraulic conductivity on (1) the solution of the mean equation for hydraulic head, (2) the covariance of hydraulic head, (3) the cross-covariances of hydraulic head and log-hydraulic conductivity perturbations and their gradients, and (4) the effective hydraulic conductivity. It is shown that the field of hydraulic head is sensitive to the presence of trends in ways that cannot be predicted by the classical analysis based on stationary hydraulic conductivity fields. The controlling variables for the second moments of hydraulic head are the mean hydraulic gradient, the correlation scale of log-hydraulic conductivity and its variance, and the slope of the trend in log-hydraulic conductivity. The mean hydraulic gradient introduces complications in the analysis since it is, in general, spatially variable. In this respect, our results are approximate, yet indicative of the true role of spatially variable patterns of log-hydraulic conductivity on groundwater flow systems. © 1993 International Association for Mathematical Geology.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View