- Main
Polynomial coefficients. Application to spin-spin splitting by N equivalent nuclei of spin I > 1/2.
- Author(s): Perrin, Charles L
- et al.
Published Web Location
https://doi.org/10.1002/mrc.4745Abstract
The NMR intensity pattern of a nucleus split by N identical nuclei of spin 1/2 is given by the binomial coefficients. These are conveniently obtained from Pascal's triangle, equivalent to the chemist's branching diagram. Much less well-known is the pattern from splitting by N identical nuclei of spin I > 1/2. This was originally presented in terms of multinomial coefficients, but polynomial coefficients are more convenient. These describe the number of ways that N objects can be distributed to 2I + 1 numbered boxes. They arise in the polynomial expansion and are conveniently obtained from generalizations of Pascal's triangle. Examples and predictions are given.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.