Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Keratinocyte Growth Factor Promotes Epithelial Survival and Resolution in a Human Model of Lung Injury

Abstract

Rationale

Increasing epithelial repair and regeneration may hasten resolution of lung injury in patients with the acute respiratory distress syndrome (ARDS). In animal models of ARDS, keratinocyte growth factor (KGF) reduces injury and increases epithelial proliferation and repair. The effect of KGF in the human alveolus is unknown.

Objectives

To test whether KGF can attenuate alveolar injury in a human model of ARDS.

Methods

Volunteers were randomized to intravenous KGF (60 μg/kg) or placebo for 3 days, before inhaling 50 μg LPS. Six hours later, subjects underwent bronchoalveolar lavage (BAL) to quantify markers of alveolar inflammation and cell-specific injury.

Measurements and main results

KGF did not alter leukocyte infiltration or markers of permeability in response to LPS. KGF increased BAL concentrations of surfactant protein D, matrix metalloproteinase (MMP)-9, IL-1Ra, granulocyte-macrophage colony-stimulating factor (GM-CSF), and C-reactive protein. In vitro, BAL fluid from KGF-treated subjects inhibited pulmonary fibroblast proliferation, but increased alveolar epithelial proliferation. Active MMP-9 increased alveolar epithelial wound repair. Finally, BAL from the KGF-pretreated group enhanced macrophage phagocytic uptake of apoptotic epithelial cells and bacteria compared with BAL from the placebo-treated group. This effect was blocked by inhibiting activation of the GM-CSF receptor.

Conclusions

KGF treatment increases BAL surfactant protein D, a marker of type II alveolar epithelial cell proliferation in a human model of acute lung injury. Additionally, KGF increases alveolar concentrations of the antiinflammatory cytokine IL-1Ra, and mediators that drive epithelial repair (MMP-9) and enhance macrophage clearance of dead cells and bacteria (GM-CSF). Clinical trial registered with ISRCTN 98813895.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View