Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

EXISTENCE OF q-ANALOGS OF STEINER SYSTEMS

  • Author(s): Braun, Michael;
  • Etzion, Tuvi;
  • Oestergard, Patric RJ;
  • Vardy, Alexander;
  • Wassermann, Alfred
  • et al.
Abstract

Let $\mathbb{F}_{q}^{n}$ be a vector space of dimension $n$ over the finite field $\mathbb{F}_{q}$. A $q$-analog of a Steiner system (also known as a $q$-Steiner system), denoted ${\mathcal{S}}_{q}(t,\!k,\!n)$, is a set ${\mathcal{S}}$ of $k$-dimensional subspaces of $\mathbb{F}_{q}^{n}$ such that each $t$-dimensional subspace of $\mathbb{F}_{q}^{n}$ is contained in exactly one element of ${\mathcal{S}}$. Presently, $q$-Steiner systems are known only for $t\,=\,1\!$, and in the trivial cases $t\,=\,k$ and $k\,=\,n$. In this paper, the first nontrivial $q$-Steiner systems with $t\,\geqslant \,2$ are constructed. Specifically, several nonisomorphic $q$-Steiner systems ${\mathcal{S}}_{2}(2,3,13)$ are found by requiring that their automorphism groups contain the normalizer of a Singer subgroup of $\text{GL}(13,2)$. This approach leads to an instance of the exact cover problem, which turns out to have many solutions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View