Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Sensitive detection of multiple islet autoantibodies in type 1 diabetes using small sample volumes by agglutination-PCR

Abstract

Islet autoantibodies are predominantly measured by radioassay to facilitate risk assessment and diagnosis of type 1 diabetes. However, the reliance on radioactive components, large sample volumes and limited throughput renders radioassay testing costly and challenging. We developed a multiplex analysis platform based on antibody detection by agglutination-PCR (ADAP) for the sample-sparing measurement of GAD, IA-2 and insulin autoantibodies/antibodies in 1 μL serum. The assay was developed and validated in 7 distinct cohorts (n = 858) with the majority of the cohorts blinded prior to analysis. Measurements from the ADAP assay were compared to radioassay to determine correlation, concordance, agreement, clinical sensitivity and specificity. The average overall agreement between ADAP and radioassay was above 91%. The average clinical sensitivity and specificity were 96% and 97%. In the IASP 2018 workshop, ADAP achieved the highest sensitivity of all assays tested at 95% specificity (AS95) rating for GAD and IA-2 autoantibodies and top-tier performance for insulin autoantibodies. Furthermore, ADAP correctly identified 95% high-risk individuals with two or more autoantibodies by radioassay amongst 39 relatives of T1D patients tested. In conclusion, the new ADAP assay can reliably detect the three cardinal islet autoantibodies/antibodies in 1μL serum with high sensitivity. This novel assay may improve pediatric testing compliance and facilitate easier community-wide screening for islet autoantibodies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View