Skip to main content
eScholarship
Open Access Publications from the University of California

Engineering the 1BS chromosome arm in wheat to remove the Rf (multi) locus restoring male fertility in cytoplasms of Aegilops kotschyi, Ae. uniaristata and Ae. mutica.

  • Author(s): Hohn, Christopher E
  • Lukaszewski, Adam J
  • et al.
Abstract

By removing the Rf (multi) locus from chromosome 1BS of wheat via chromosome engineering we were able to generate a resource for the production of male sterile wheats in three new cytoplasms. Cytoplasmic male sterility is an essential component in the development of many hybrid crops. In wheat (Triticum aestivum L.) only the cytoplasm of T. timopheevi cytoplasm has been extensively tested even though many other cytoplasms are also known to produce male sterility. Among them are the cytoplasms of Ae. kotschyi, Ae. uniaristata and Ae. mutica but here male sterility manifests itself only when the 1RS.1BL rye-wheat translocation is present in the nuclear genome. The location of the male fertility restoring gene on the chromosome arm 1BS (Rf (multi) ) has recently been determined using a set of primary recombinants of chromosome arms 1RS with 1BS. Using this knowledge the same recombinants were used to create chromosome arm 1BS in wheat with a small insert from rye that removes the restorer locus. The disomic engineered chromosome 1B1:6 assures male sterility in all three cytoplasms and any standard chromosome 1B in wheat is capable of restoring it. This newly engineered chromosome in combination with the three cytoplasms of Aegilops sp extends the range of possibilities in attempts to create a viable system for hybrid wheat production.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View