- Main
A large-scale quantitative analysis of latent factors and sentiment in online doctor reviews
Published Web Location
https://doi.org/10.1136/amiajnl-2014-002711Abstract
Online physician reviews are a massive and potentially rich source of information capturing patient sentiment regarding healthcare. We analyze a corpus comprising nearly 60,000 such reviews with a state-of-the-art probabilistic model of text. We describe a probabilistic generative model that captures latent sentiment across aspects of care (eg, interpersonal manner). We target specific aspects by leveraging a small set of manually annotated reviews. We perform regression analysis to assess whether model output improves correlation with state-level measures of healthcare. We report both qualitative and quantitative results. Model output correlates with state-level measures of quality healthcare, including patient likelihood of visiting their primary care physician within 14 days of discharge (p=0.03), and using the proposed model better predicts this outcome (p=0.10). We find similar results for healthcare expenditure. Generative models of text can recover important information from online physician reviews, facilitating large-scale analyses of such reviews.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-