Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Validation of the TOPAS Monte Carlo toolkit for HDR brachytherapy simulations.

Abstract

PURPOSE: The goal of this work is to validate the user-friendly Geant4-based Monte Carlo toolkit TOol for PArticle Simulation (TOPAS) for brachytherapy applications. METHODS AND MATERIALS: Brachytherapy simulations performed with TOPAS were systematically compared with published TG-186 reference data. The photon emission energy spectrum, the air-kerma strength, and the dose-rate constant of the model-based dose calculation algorithm (MBDCA)-WG generic Ir-192 source were extracted. For dose calculations, a track-length estimator was implemented. The four Joint AAPM/ESTRO/ABG MBDCA-WG test cases were evaluated through histograms of the local and global dose difference volumes. A prostate, a palliative lung, and a breast case were simulated. For each case, the dose ratio map, the histogram of the global dose difference volume, and cumulative dose-volume histograms were calculated. RESULTS: The air-kerma strength was (9.772 ± 0.001) × 10-8 U Bq-1 (within 0.3% of the reference value). The dose-rate constant was 1.1107 ± 0.0005 cGy h-1 U-1 (within 0.01% of the reference value). For all cases, at least 96.9% of voxels had a local dose difference within [-1%, 1%] and at least 99.9% of voxels had a global dose difference within [-0.1%, 0.1%]. The implemented track-length estimator scorer was more efficient than the default analog dose scorer by a factor of 237. For all clinical cases, at least 97.5% of voxels had a global dose difference within [-1%, 1%]. Dose-volume histograms were consistent with the reference data. CONCLUSIONS: TOPAS was validated for high-dose-rate brachytherapy simulations following the TG-186 recommended approach for MBDCAs. Built on top of Geant4, TOPAS provides broad access to a state-of-the-art Monte Carlo code for brachytherapy simulations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View