Generalized Duffy transformation for integrating vertex singularities
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Generalized Duffy transformation for integrating vertex singularities

Abstract

For an integrand with a 1/r vertex singularity, the Duffy transformation from a triangle (pyramid) to a square (cube) provides an accurate and efficient technique to evaluate the integral. In this paper, we generalize the Duffy transformation to power singularities of the form p(x)/r α , where p is a trivariate polynomial and α > 0 is the strength of the singularity. We use the map (u, v, w) → (x, y, z) : x = u β , y = x v, z = x w, and judiciously choose β to accurately estimate the integral. For α = 1, the Duffy transformation (β = 1) is optimal, whereas if α ≠ 1, we show that there are other values of β that prove to be substantially better. Numerical tests in two and three dimensions are presented that reveal the improved accuracy of the new transformation. Higher-order partition of unity finite element solutions for the Laplace equation with a derivative singularity at a re-entrant corner are presented to demonstrate the benefits of using the generalized Duffy transformation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View