Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

A network-flow technique for finding low-weight bounded-degree spanning trees

Abstract

Given a graph with edge weights satisfying the triangle inequality, and a degree bound for each vertex, the problem of computing a low weight spanning tree such that the degree of each vertex is at most its specified bound is considered. In particular, modifying a given spanning tree T using adoptions to meet the degree constraints is considered. A novel network-flow based algorithm for finding a good sequence of adoptions is introduced. The method yields a better performance guarantee than any previously obtained. Equally importantly, it takes this approach to the limit in the following sense: if any performance guarantee that is solely a function of the topology and edge weights of a given tree holds for any algorithm at all, then it also holds for our algorithm. The performance guarantee is the following.If the degree constraint d(v) for each v is at least 2, the algorithm is guaranteed to find a tree whose weight is at most the weight of the given tree times (formula presented) where degT(v) is the initial degree of v. Examples are provided in which no lighter tree meeting the degree constraint exists. Linear-time algorithms are provided with the same worst-case performance guarantee. Choosing T to be a minimum spanning tree yields approximation algorithms for the general problem on geometric graphs with distances induced by various Lp norms. Finally, examples of Euclidean graphs are provided in which the ratio of the lengths of an optimal Traveling Salesman path and a minimum spanning tree can be arbitrarily close to 2.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View