Skip to main content
eScholarship
Open Access Publications from the University of California

Spectroscopic signatures of proton transfer dynamics in the water dimer cation

Abstract

Using full dimensional EOM-IP-CCSD/aug-cc-pVTZ potential energy surfaces, the photoelectron spectrum, vibrational structure, and ionization dynamics of the water dimer radical cation, (H2O)+2, were computed. We also report an experimental photoelectron spectrum which is derived from photoionization efficiency measurements and compares favorably with the theoretical spectrum. The vibrational structure is also compared with the recent experimental work of Gardenier et al. [J. Phys. Chem. A 113, 4772 (2009)] and the recent theoretical calculations by Cheng et al. [J. Phys. Chem. A 113 13779 (2009)]. A reduced dimensionality nuclear Hamiltonian was used to compute the ionization dynamics for both the ground state and first excited state of the cation. The dynamics show markedly different behavior and spectroscopic signatures depending on which state of the cation is accessed by the ionization. Ionization to the ground-state cation surface induces a hydrogen transfer which is complete within 50 femtoseconds, whereas ionization to the first excited state results in a much slower process.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View