Skip to main content
Open Access Publications from the University of California


UC San Francisco Previously Published Works bannerUCSF

Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer.

  • Author(s): Bikle, Daniel D
  • Jiang, Yan
  • Nguyen, Thai
  • Oda, Yuko
  • Tu, Chia-Ling
  • et al.

1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis ((epid) Vdr (-∕-) and (epid) Casr (-∕-)). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β-catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr (-∕-) mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the (epid) Vdr (-∕-) or (epid) Casr (-∕-). But in mice with epidermal specific deletion of both Vdr and Casr ((epid) Vdr (-∕-)/(epid) Casr (-∕-) [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β-catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View