Skip to main content
eScholarship
Open Access Publications from the University of California

Pressure-temperature stability studies of FeOOH using x-ray diffraction

Abstract

The Mie-Gruneisen formalism is used to fit a Birch-Murnaghan equation of state to high-temperature (T), high-pressure (P) X-ray diffraction unit-cell volume (V) measurements on synthetic goethite (alpha-FeOOH) to combined conditions of T = 23-250o C and P = 0-29.4 GPa. We find the zero-pressure thermal expansion coefficient of goethite to be alpha0 = 2.3 (+-0.6) x 10-5 K-1 over this temperature range. Our data yield zero-pressure compressional parameters: V0 = 138.75 (+- 0.02) Angstrom3, bulk modulus K0 = 140.3 (+- 3.7) GPa, pressure derivative K0' = 4.6 (+- 0.4), Gruneisen parameter gamma0 = 0.91 (+- 0.07), and Debye temperature Theta0 = 740 (+- 5) K. We identify decomposition conditions for 2alpha-FeOOH --> alpha-Fe2O3 + H2O at 1 - 8 GPa and 100-400oC, and the polymorphic transition from alpha-FeOOH (Pbnm) to epsilon-FeOOH (P21mn). The non-quenchable, high-pressure epsilon-FeOOH phase P-V data are fitted to a second-order (Birch) equation of state yielding, K0 = 158 (+- 5) GPa and V0 = 66.3 (+- 0.5) Angstrom3.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View