Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Involvement of Toll-Like Receptor 4 in Decreased Vasopressor Response Following Trauma/Hemorrhagic Shock.

  • Author(s): Mazor, Rafi
  • Dos Santos, Fernando
  • Li, Joyce B
  • Aletti, Federico
  • Schmid-Schonbein, Geert
  • Kistler, Erik B
  • et al.

Refractory vascular failure due to the inability of vascular smooth muscle to respond to vasoconstrictors such as phenylephrine is a final common pathway for severe circulatory shock of any cause, including trauma/hemorrhagic shock. Increased inflammation, Toll-like receptor 4 activation, and decreased response of the alpha-1 adrenergic receptors which control vascular tone have been reported in trauma/hemorrhagic shock.


In trauma/hemorrhagic shock, Toll-like receptor 4 activation contributes to vascular failure via decreased bioavailability of adrenergic receptors.

Design and measurements

Trauma/hemorrhagic shock was induced in Wistar rats (laparotomy combined with mean arterial pressure at 40 mm Hg for 90 min followed by 2 hr resuscitation with Lactated Ringers solution). To inhibit Toll-like receptor 4, resatorvid (TAK-242) and resveratrol were used, and plasma was collected. Smooth muscle cells were incubated with lipopolysaccharide (10 ng/mL) or plasma. Inflammatory cytokines were screened using dot-blot. Toll-like receptor 4 and nuclear factor κB activation and cellular localization of the alpha-1 adrenergic receptor were measured by immunofluorescence imaging and Western blot analysis. Clustered regularly interspaced short palindromic repeats/Cas9 was used to knock out Toll-like receptor 4, and calcium influx following stimulation with phenylephrine was recorded.

Main results

Trauma/hemorrhagic shock caused a decreased response to phenylephrine, whereas Toll-like receptor 4 inhibition improved blood pressure. Trauma/hemorrhagic shock plasma activated the Toll-like receptor 4/nuclear factor κB pathway in smooth muscle cells. Double labeling of Toll-like receptor 4 and the alpha-1 adrenergic receptor showed that these receptors are colocalized on the cell membrane. Activation of Toll-like receptor 4 caused cointernalization of both receptors. Calcium influx was impaired in cells incubated with trauma/hemorrhagic shock plasma but restored when Toll-like receptor 4 was knocked out or inhibited.


Activation of the Toll-like receptor 4 desensitizes vascular smooth muscle cells to vasopressors in experimental trauma/hemorrhagic shock by reducing the levels of membrane alpha-1 adrenergic receptor.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View