- Main
Rational homotopy type and computability
Abstract
Given a simplicial pair $(X,A)$, a simplicial complex $Y$, and a map $f:A \to Y$, does $f$ have an extension to $X$? We show that for a fixed $Y$, this question is algorithmically decidable for all $X$, $A$, and $f$ if $Y$ has the rational homotopy type of an H-space. As a corollary, many questions related to bundle structures over a finite complex are likely decidable. Conversely, for all other $Y$, the question is at least as hard as certain special cases of Hilbert's tenth problem which are known or suspected to be undecidable.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-