Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Combined Assessment of Pulmonary Ventilation and Perfusion with Single-Energy Computed Tomography and Image Processing

Abstract

Rationale and objectives

To establish a proof-of-principle for combined assessment of pulmonary ventilation and perfusion using single-energy computed tomography (CT) and image processing/analysis (denoted as single-energy CT ventilation/perfusion imaging).

Materials and methods

Breath-hold CT scans were acquired at end-expiration and end-inspiration before injection of iodinated contrast agents, and repeated at end-inspiration after contrast injection for 17 canines (8 normal and 9 diseased lung subjects). Ventilation images were calculated with deformable image registration to map the end-expiratory and end-inspiratory CT images and quantitative analysis for regional volume changes as surrogates for ventilation. Perfusion images were calculated by subtracting the end-inspiratory precontrast CT from the deformably registered end-inspiratory postcontrast CT, yielding a map of regional Hounsfield unit enhancement as a surrogate for perfusion. Ventilation-perfusion matching, spatial heterogeneity, and gravitationally directed gradients were compared between two groups using a Wilcoxon rank-sum test.

Results

The normal group had significantly higher Dice similarity coefficients for spatial overlap of segmented functional volumes between ventilation and perfusion (median 0.40 vs. 0.33, p = 0.05), suggesting stronger ventilation-perfusion matching. The normal group also had greater Spearman's correlation coefficients based on 16 regions of interest (median 0.58 vs. 0.40, p = 0.09). The coefficients of variation were comparable (median, ventilation 0.71 vs. 0.91, p = 0.60; perfusion 0.63 vs. 0.75, p = 0.27). The linear regression slopes of gravitationally directed gradient were also comparable for ventilation (median, ventilation -0.26 vs. -0.18, p = 0.19; perfusion -0.17 vs. -0.06, p = 0.11).

Conclusion

These findings provide proof-of-principle for single-energy CT ventilation/perfusion imaging.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View