Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Three-Dimensional Imaging of the Local Structure of Materials at Atomic Resolution by Electron Tomography

Abstract

Electron tomography was originally developed in 1968, and has been primarily applied to determine the three-dimensional (3D) structure of biological systems. In the last decade, the application of electron tomography in materials science and nanoscience has revived due to the utilization of scanning transmission electron microscopy (STEM) in the high-angle annular dark-field (HAADF) mode, and a highest resolution of ~1 nm^3 has been achieved. However, improving the resolution from ~1 nm^3 to the atomic level remains a challenging task, which requires new tomographic reconstruction algorithms, better projection alignment methods, state-of-the-art STEM instruments, and more accurate data-acquisition procedures. In this thesis, important progress has been made in all these four areas. First, a novel tomographic method, termed equally sloped tomography (EST), was developed and allows the 3D image reconstruction of tilt series with a limited number projections and a "missing wedge" (i.e. specimens cannot usually be tilted beyond ±70°). Second, an alignment method which can be used to align the projections of a tilt series at atomic-level resolution was developed based on center of mass. Finally, by using a Titan 80-300 STEM instrument at the California NanoSystems Institute, UCLA, more accurate data acquisition procedures were developed and a number of tomographic tilt series of atomic resolution projections from different nanoparticles have been obtained. With all these combinations, the 3D structure of a 10 nm gold nanoparticle was determined at 2.4 Å resolution, the highest resolution ever achieved in any general tomography method. More recently, this novel electron tomography method has been applied to observe nearly all the atoms in a Pt nanoparticle, and imaged for the first time the 3D core structure of edge and screw dislocations at atomic resolution. Furthermore, through numerical simulations the feasibility of determining the 3D atomic structure of amorphous materials by the Electron Tomography method has been demonstrated.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View