Skip to main content
Open Access Publications from the University of California

The angular intensity correlation functionsC(1)andC(10)for the scattering of light from randomly rough dielectric and metal surfaces

  • Author(s): Leskova, Tamara A
  • Simonsen, Ingve
  • Maradudin, Alexei A
  • et al.

We study the statistical properties of the scattering matrix S (q/k) for the problem of the scattering of light of frequency ω from a randomly rough one-dimensional surface, defined by the equation x3 = ζ(x1), where the surface profile function ζ(x1) constitutes a zero-mean, stationary, Gaussian random process. This is done by studying the effects of S (q/k) on the angular intensity correlation function C(q, k/q′, k′) = - , where the intensity I(q/k) is defined in terms of S(q/k) by I(q/k) = L1-1(ω/c)|S(q/k)|2, with L1 the length of the x1 axis covered by the random surface. We focus our attention on the C(1) and C(10) correlation functions, which are the contributions to C(q, k\q′, k′) proportional to δ(q - k - q′ + k′) and δ(q - k + q′ - k′), respectively. The existence of both of these correlation functions is consistent with the amplitude of the scattered field obeying complex Gaussian statistics in the limit of a long surface and in the presence of weak surface roughness. We show that the deviation of the statistics of the scattering matrix from complex circular Gaussian statistics and the C(10) correlation function are determined by exactly the same statistical moment of S(q/k). As the random surface becomes rougher, the amplitude of the scattered field no longer obeys complex Gaussian statistics but obeys complex circular Gaussian statistics instead. In this case the C(10) correlation function should therefore vanish. This result is confirmed by numerical simulation calculations.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View