- Main
FLUID-GPT (Fast Learning to Understand and Investigate Dynamics with a Generative Pre-Trained Transformer): Efficient Predictions of Particle Trajectories and Erosion.
Published Web Location
https://doi.org/10.1021/acs.iecr.3c01639Abstract
The deleterious impact of erosion due to high-velocity particle impingement adversely affects a variety of engineering and industrial systems, resulting in irreversible mechanical wear of materials/components. Brute force computational fluid dynamics (CFD) calculations are commonly used to predict surface erosion by directly solving the Navier-Stokes equations for fluid and particle dynamics; however, these numerical approaches often require significant computational resources. In contrast, recent data-driven approaches using machine learning (ML) have shown immense promise for more efficient and accurate predictions to sidestep computationally demanding CFD calculations. To this end, we have developed FLUID-GPT (Fast Learning to Understand and Investigate Dynamics with a Generative Pre-Trained Transformer), a new hybrid ML architecture for accurately predicting particle trajectories and erosion on an industrial-scale steam header geometry. Our FLUID-GPT approach utilizes a Generative Pre-Trained Transformer 2 (GPT-2) with a convolutional neural network (CNN) for the first time to predict surface erosion using only information from five initial conditions: particle size, main-inlet speed, main-inlet pressure, subinlet speed, and subinlet pressure. Compared to the bidirectional long- and short-term memory (BiLSTM) ML techniques used in previous work, our FLUID-GPT model is much more accurate (a 54% decrease in the mean squared error) and efficient (70% less training time). Our work demonstrates that FLUID-GPT is an accurate and efficient ML approach for predicting time-series trajectories and their subsequent spatial erosion patterns in these complex dynamic systems.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-