- Main
Autoinhibition regulates the motility of the C-elegans intraflagellar transport motor OSM-3
Abstract
OSM-3 is a Kinesin-2 family member from Caenorhabditis elegans that is involved in intraflagellar transport (IFT), a process essential for the construction and maintenance of sensory cilia. In this study, using a single-molecule fluorescence assay, we show that bacterially expressed OSM-3 in solution does not move processively (multiple steps along a microtubule without dissociation) and displays low microtubule-stimulated adenosine triphosphatase (ATPase) activity. However, a point mutation (G444E) in a predicted hinge region of OSM-3's coiled-coil stalk as well as a deletion of that hinge activate ATPase activity and induce robust processive movement. These hinge mutations also cause a conformational change in OSM-3, causing it to adopt a more extended conformation. The motility of wild-type OSM-3 also can be activated by attaching the motor to beads in an optical trap, a situation that may mimic attachment to IFT cargo. Our results suggest that OSM-3 motility is repressed by an intramolecular interaction that involves folding about a central hinge and that IFT cargo binding relieves this autoinhibition in vivo. Interestingly, the G444E allele in C. elegans produces similar ciliary defects to an osm-3-null mutation, suggesting that autoinhibition is important for OSM-3's biological function.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-