Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Waves and turbulence in katabatic winds

Abstract

The measurements taken during the Vertical Transport and Mixing Experiment (VTMX, October, 2000) on a northeastern slope of Salt Lake Valley, Utah, were used to calculate the statistics of velocity fluctuations in a katabatic gravity current in the absence of synoptic forcing. The data from ultrasonic anemometer-thermometers placed at elevations 4.5 and 13.9 m were used. The contributions of small-scale turbulence and waves were isolated by applying a high-pass digital (Elliptical) filter, whereupon the filtered quantities were identified as small-scale turbulence and the rest as internal gravity waves. Internal waves were found to play a role not only at canonical large gradient Richardson numbers (Rig > 1), but sometimes at smaller values (0.1 < Rig < 1), in contrast to typical observations in flat-terrain stable boundary layers. This may be attributed, at least partly, to (critical) internal waves on the slope, identified by Princevac et al. [1], which degenerate into turbulence and help maintain an active internal wave field. The applicability of both Monin-Obukhov (MO) similarity theory and local scaling to filtered and unfiltered data was tested by analyzing rms velocity fluctuations as a function of the stability parameter z/L, where L is the Obukhov length and z the height above the ground. For weaker stabilities, z/L < 1, the MO similarity and local scaling were valid for both filtered and unfiltered data. Conversely, when z/L > 1, the use of both scaling types is questionable, although filtered data showed a tendency to follow local scaling. A relationship between z/L and Rig was identified. Eddy diffusivities of momentum KM and heat KH were dependent on wave activities, notably when Rig > 1. The ratio KH/KM dropped well below unity at high Rig, in consonance with previous laboratory stratified shear layer measurements as well as other field observations. © 2014 Springer Science+Business Media Dordrecht.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View