- Main
Lattice and Heegaard Floer Homologies of Algebraic Links
Published Web Location
https://doi.org/10.1093/imrn/rnv075Abstract
We compute the Heegaard Floer link homology of algebraic links in terms of the multi-variate Hilbert function of the corresponding plane curve singularities. The main result of the paper identifies four homologies: (a) the Heegaard Floer link homology of the local embedded link, (b) the lattice homology associated with the Hilbert function, (c) the homologies of the projectivized complements of local hyperplane arrangements cut out from the local algebra, and (d) a generalized version of the Orlik-Solomon algebra of these local arrangements. In particular, the PoincarCrossed D sign polynomials of all these homology groups are the same, and we also show that they agree with the coefficients of the motivic PoincarCrossed D sign series of the singularity.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-