Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Spectroscopy-Guided Deep Learning Predicts Solid-Liquid Surface Adsorbate Properties in Unseen Solvents.

Abstract

Accurately and rapidly acquiring the microscopic properties of a material is crucial for catalysis and electrochemistry. Characterization tools, such as spectroscopy, can be a valuable tool to infer these properties, and when combined with machine learning tools, they can theoretically achieve fast and accurate prediction results. However, on the path to practical applications, training a reliable machine learning model is faced with the challenge of uneven data distribution in a vast array of non-negligible solvent types. Herein, we employ a combination of the first-principles-based approach and data-driven model. Specifically, we utilize density functional theory (DFT) to calculate theoretical spectral data of CO-Ag adsorption in 23 different solvent systems as a data source. Subsequently, we propose a hierarchical knowledge extraction multiexpert neural network (HMNN) to bridge the knowledge gaps among different solvent systems. HMNN undergoes two training tiers: in tier I, it learns fundamental quantitative spectra-property relationships (QSPRs), and in tier II, it inherits the fundamental QSPR knowledge from previous steps through a dynamic integration of expert modules and subsequently captures the solvent differences. The results demonstrate HMNNs superiority in estimating a range of molecular adsorbate properties, with an error range of less than 0.008 eV for zero-shot predictions on unseen solvents. The findings underscore the usability, reliability, and convenience of HMNN and could pave the way for real-time access to microscopic properties by exploiting QSPR.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View