The Honest Embedding Dimension of a Numerical Semigroup
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

The Honest Embedding Dimension of a Numerical Semigroup

Creative Commons 'BY-ND' version 4.0 license
Abstract

Attached to a singular analytic curve germ in $d$-space is a numerical semigroup: a subset $S$ of the non-negative integers which is closed under addition and whose complement isfinite. Conversely, associated to any numerical semigroup $S$ is a canonical mononial curve in $e$-space where $e$ is the number of minimal generators of the semigroup. It may happen that $d < e = e(S)$ where $S$ is the semigroup of the curve in $d$-space. Define the minimal (or `honest') embedding of a numerical semigroup to be the smallest $d$ such that $S$ is realized by a curve in $d$-space. Problem: characterize the numerical semigroups having minimal embedding dimension $d$. The answer is known for the case $d=2$ of planar curves and reviewed in an Appendix to this paper. The case $d =3$ of the problem is open. Our main result is a characterization of the multiplicity $4$ numerical semigroups whose minimal embedding dimension is $3$. See figure 1. The motivation for this work came from thinking about Legendrian curve singularities.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View