Skip to main content
Open Access Publications from the University of California

TALE-light imaging reveals maternally guided, H3K9me2/3-independent emergence of functional heterochromatin in Drosophila embryos.

  • Author(s): Yuan, Kai
  • O'Farrell, Patrick H
  • et al.

Metazoans start embryogenesis with a relatively naïve genome. The transcriptionally inert, late-replicating heterochromatic regions, including the constitutive heterochromatin on repetitive sequences near centromeres and telomeres, need to be re-established during development. To explore the events initiating heterochromatin formation and examine their temporal control, sequence specificity, and immediate regulatory consequence, we established a live imaging approach that enabled visualization of steps in heterochromatin emergence on specific satellite sequences during the mid-blastula transition (MBT) in Drosophila. Unexpectedly, only a subset of satellite sequences, including the 359-base-pair (bp) repeat sequence, recruited HP1a at the MBT. The recruitment of HP1a to the 359-bp repeat was dependent on HP1a's chromoshadow domain but not its chromodomain and was guided by maternally provided signals. HP1a recruitment to the 359-bp repeat was required for its programmed shift to later replication, and ectopic recruitment of HP1a was sufficient to delay replication timing of a different repeat. Our results reveal that emergence of constitutive heterochromatin follows a stereotyped developmental program in which different repetitive sequences use distinct interactions and independent pathways to arrive at a heterochromatic state. This differential emergence of heterochromatin on various repetitive sequences changes their replication order and remodels the DNA replication schedule during embryonic development.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View