Skip to main content
eScholarship
Open Access Publications from the University of California

Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results

  • Author(s): Hasan, David
  • Chalouhi, Nohra
  • Jabbour, Pascal
  • Hashimoto, Tomoki
  • et al.
Abstract

Abstract Background M1 and M2 cells are two major subsets of human macrophages that exert opposite effects on the inflammatory response. This study aims to investigate the role of macrophage M1/M2 imbalance and mast cells in the progression of human cerebral aneurysms to rupture. Methods Ten patients with cerebral aneurysms (five ruptured and five unruptured) underwent microsurgical clipping. During the procedure, a segment of the aneurysm dome was resected and immunostained with monoclonal antibodies for M1 cells (anti-HLA DR), M2 cells (anti-CD 163), and mast cells (anti-tryptase clone AA). A segment of the superficial temporal artery (STA) was also removed and immunostained with monoclonal antibodies for M1, M2, and mast cells. Results All ten aneurysm tissues stained positive for M1, M2, and mast cells. M1 and M2 cells were present in equal proportions in unruptured aneurysms. This contrasted with a marked predominance of M1 over M2 cells in ruptured aneurysms (p = 0.045). Mast cells were also prominently upregulated in ruptured aneurysms (p = 0.001). Few M1 and M2 cells were present in STA samples. Conclusions M1/M2 macrophages and mast cells are found in human cerebral aneurysms; however, M1 and mast cell expression seems to markedly increase in ruptured aneurysms. These findings suggest that macrophage M1/M2 imbalance and upregulation of mast cells may have a role in the progression of cerebral aneurysms to rupture.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View