Skip to main content
Open Access Publications from the University of California


UC San Francisco Previously Published Works bannerUCSF

Long-term television viewing patterns and gray matter brain volume in midlife


The purpose of this study was to investigate whether long-term television viewing patterns, a common sedentary behavior, in early to mid-adulthood is associated with gray matter brain volume in midlife and if this is independent of physical activity. We evaluated 599 participants (51% female, 44% black, mean age 30.3 ± 3.5 at baseline and 50.2 ± 3.5 years at follow-up and MRI) from the prospective Coronary Artery Risk Development in Young Adults (CARDIA) study. We assessed television patterns with repeated interviewer-administered questionnaire spanning 20 years. Structural MRI (3T) measures of frontal cortex, entorhinal cortex, hippocampal, and total gray matter volumes were assessed at midlife. Over the 20 years, participants reported viewing an average of 2.5 ± 1.7 h of television per day (range: 0-10 h). After multivariable adjustment, greater television viewing was negatively associated with gray matter volume in the frontal (β = - 0.77; p = 0.01) and entorhinal cortex (β = - 23.83; p = 0.05) as well as total gray matter (β = - 2.09; p = 0.003) but not hippocampus. These results remained unchanged after additional adjustment for physical activity. For each one standard deviation increase in television viewing, the difference in gray matter volume z-score was approximately 0.06 less for each of the three regions (p < 0.05). Among middle-aged adults, greater television viewing in early to mid-adulthood was associated with lower gray matter volume. Sedentariness or other facets of television viewing may be important for brain aging even in middle age.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View