Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Voluntary Exercise Rescues the Spatial Memory Deficit Associated With Early Life Isoflurane Exposure in Male Rats.

Abstract

Background

Early life anesthesia exposure results in long-term cognitive deficits in rats. Environmental enrichment consisting of social housing, a stimulating environment, and voluntary exercise can rescue this deficit. We hypothesized that exercise alone is sufficient to rescue the cognitive deficit associated with perinatal anesthesia.

Methods

Postnatal day 7 male rats (P7) underwent isoflurane (Iso) or sham exposure and were subsequently weaned at P21. They were then singly housed in a cage with a running wheel or a fixed wheel. After 3 weeks of exercise, animals underwent behavioral testing for spatial and recognition memory assessments. Animals were killed at various time points to accomplish either bromodeoxyuridine (BrdU) labeling or quantitative real-time polymerase chain reaction (qRT-PCR) to quantify brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) levels.

Results

Postweaning voluntary exercise rescued the long-term spatial memory deficit associated with perinatal Iso exposure. Iso-sedentary animals did not discriminate the goal quadrant, spending no more time than chance during the Barnes maze probe trial (1-sample t test, P = .524) while all other groups did (1-sample t test, PIso-exercise = .033; Pcontrol [Con]-sedentary = .004). We did not find a deficit in recognition memory tasks after Iso exposure as we observed previously. BrdU incorporation in the adult hippocampus of Iso-sedentary animals was decreased compared to sedentary controls (Tukey P = .005). Exercise prevented this decrease, with Iso-exercise animals having more proliferation than Iso-sedentary (Tukey P < .001). There was no effect of exercise or Iso on BDNF mRNA in either the cortex or hippocampus (cortex: FExercise[1,32] = 0.236, P = .631; FIso [1,32] = 0.038, P = .847; FInteraction [1,32] = 1.543, P = .223; and hippocampus: FExercise[1,33] = 1.186, P = .284; FIso [1,33] = 1.46, P = .236; FInteraction[1,33] = 1.78, P = .191).

Conclusions

Exercise restores BrdU incorporation and rescues a spatial memory deficit after early life anesthesia exposure. This demonstrates sufficiency of exercise alone in the context of environmental enrichment to recover a behavioral phenotype after a perinatal insult.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View